Inhibition of the mTOR/p70S6K pathway is not involved in the insulin-sensitizing effect of AMPK on cardiac glucose uptake.
نویسندگان
چکیده
The AMP-activated protein kinase (AMPK) is known to increase cardiac insulin sensitivity on glucose uptake. AMPK also inhibits the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) pathway. Once activated by insulin, mTOR/p70S6K phosphorylates insulin receptor substrate-1 (IRS-1) on serine residues, resulting in its inhibition and reduction of insulin signaling. AMPK was postulated to act on insulin by inhibiting this mTOR/p70S6K-mediated negative feedback loop. We tested this hypothesis in cardiomyocytes. The stimulation of glucose uptake by AMPK activators and insulin correlated with AMPK and protein kinase B (PKB/Akt) activation, respectively. Both treatments induced the phosphorylation of Akt substrate 160 (AS160) known to control glucose uptake. Together, insulin and AMPK activators acted synergistically to induce PKB/Akt overactivation, AS160 overphosphorylation, and glucose uptake overstimulation. This correlated with p70S6K inhibition and with a decrease in serine phosphorylation of IRS-1, indicating the inhibition of the negative feedback loop. We used the mTOR inhibitor rapamycin to confirm these results. Mimicking AMPK activators in the presence of insulin, rapamycin inhibited p70S6K and reduced IRS-1 phosphorylation on serine, resulting in the overphosphorylation of PKB/Akt and AS160. However, rapamycin did not enhance the insulin-induced stimulation of glucose uptake. In conclusion, although the insulin-sensitizing effect of AMPK on PKB/Akt is explained by the inhibition of the insulin-induced negative feedback loop, its effect on glucose uptake is independent of this mechanism. This disconnection revealed that the PKB/Akt/AS160 pathway does not seem to be the rate-limiting step in the control of glucose uptake under insulin treatment.
منابع مشابه
Glucose phosphorylation is required for insulin-dependent mTOR signalling in the heart.
OBJECTIVE Insulin regulates both glucose uptake and postnatal cardiac growth. The anabolic effects of insulin are mediated by the mammalian target of rapamycin (mTOR), an evolutionarily conserved kinase which is also a convergence point between nutrient sensing and cell growth. We postulated that mTOR signalling in the heart requires the metabolism of glucose. METHODS We interrogated the insu...
متن کاملMetabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake.
High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucos...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملComparing the Effect of Continuous and Intermittent Exercise Training Regimens on soleus GLUT4, AMPK and Insulin Receptor in Streptozotocin-Induced Diabetic Rats
Background: The impact of continuous and intermittent training on diabetes mellitus condition and its mechanism is not well understood. The aim of the present study was to assess the changes in glucose uptake after 6 weeks of continuous and intermittent exercise training protocols in healthy and streptozotocin (STZ)-induced diabetic rats. Method: Sixty male al...
متن کاملLoss of AMP-Activated Protein Kinase-α2 Impairs the Insulin-Sensitizing Effect of Calorie Restriction in Skeletal Muscle
Whether the well-known metabolic switch AMP-activated protein kinase (AMPK) is involved in the insulin-sensitizing effect of calorie restriction (CR) is unclear. In this study, we investigated the role of AMPK in the insulin-sensitizing effect of CR in skeletal muscle. Wild-type (WT) and AMPK-α2(-/-) mice received ad libitum (AL) or CR (8 weeks at 60% of AL) feeding. CR increased the protein le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 301 2 شماره
صفحات -
تاریخ انتشار 2011